Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity.

نویسندگان

  • Aymone Gurtner
  • Emmanuela Falcone
  • Francesca Garibaldi
  • Giulia Piaggio
چکیده

A widespread decrease of mature microRNAs is often observed in human malignancies giving them potential to act as tumor suppressors. Thus, microRNAs may be potential targets for cancer therapy. The global miRNA deregulation is often the result of defects in the miRNA biogenesis pathway, such as genomic mutation or aberrant expression/localization of enzymes and cofactors responsible of miRNA maturation. Alterations in the miRNA biogenesis machinery impact on the establishment and development of cancer programs. Accumulation of pri-microRNAs and corresponding depletion of mature microRNAs occurs in human cancers compared to normal tissues, strongly indicating an impairment of crucial steps in microRNA biogenesis. In agreement, inhibition of microRNA biogenesis, by depletion of Dicer1 and Drosha, tends to enhance tumorigenesis in vivo. The p53 tumor suppressor gene, TP53, is mutated in half of human tumors resulting in an oncogene with Gain-Of-Function activities. In this review we discuss recent studies that have underlined a role of mutant p53 (mutp53) on the global regulation of miRNA biogenesis in cancer. In particular we describe how a new transcriptionally independent function of mutant p53 in miRNA maturation, through a mechanism by which this oncogene is able to interfere with the Drosha processing machinery, generally inhibits miRNA processing in cancer and consequently impacts on carcinogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex

MicroRNAs (miRNAs) are noncoding RNAs that function as key posttranscriptional regulators of gene expression. miRNA maturation is controlled by the DROSHA microprocessor complex. However, the detailed mechanism of miRNA biogenesis remains unclear. We show that the tumor suppressor breast cancer 1 (BRCA1) accelerates the processing of miRNA primary transcripts. BRCA1 increased the expressions of...

متن کامل

A novel role for GSK3β as a modulator of Drosha microprocessor activity and MicroRNA biogenesis

Regulation of microRNA (miR) biogenesis is complex and stringently controlled. Here, we identify the kinase GSK3β as an important modulator of miR biogenesis at Microprocessor level. Repression of GSK3β activity reduces Drosha activity toward pri-miRs, leading to accumulation of unprocessed pri-miRs and reduction of pre-miRs and mature miRs without altering levels or cellular localisation of mi...

متن کامل

The terminal loop region controls microRNA processing by Drosha and Dicer

microRNAs are widely expressed, ∼22-nt-long regulatory RNAs. They are first transcribed as much longer primary transcripts, which then undergo a series of processing steps to yield the single-stranded, mature microRNAs, although the mechanisms are incompletely understood. Here, we show that the terminal loop region of human primary microRNA transcripts is an important determinant of microRNA bi...

متن کامل

مطالعه اثر ضد سرطانی پروبیوتیک‌ها بر میزان پروتئین جهش یافته p53 در رده سلولی K562

Background : Probiotics are defined as different microorganisms that may have positive effects on preventing or treatment of special pathologic conditions. Lactobacillus casei and L. paracasei as probiotics could induce the apoptosis in human cancer cells in vitro. Chronic myeloid leukemia is categorized as a blood cells cancer and the most common type of leukemia. The expression of mutant p53 ...

متن کامل

miRNA Biogenesis Enzyme Drosha Is Required for Vascular Smooth Muscle Cell Survival

miRNA biogenesis enzyme Drosha cleaves double-stranded primary miRNA by interacting with double-stranded RNA binding protein DGCR8 and processes primary miRNA into precursor miRNA to participate in the miRNA biogenesis pathway. The role of Drosha in vascular smooth muscle cells (VSMCs) has not been well addressed. We generated Drosha conditional knockout (cKO) mice by crossing VSMC-specific Cre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental & clinical cancer research : CR

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016